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In this paper we construct and comprehensively analyze the strict optical model of a quartz cuvette filled with
investigated liquid, that is typically used in spectrophotometry measurements. We do not make any assumptions
concerning the scale of reflections or attenuations but we assume no scattering. We perform uncertainty analysis
assuming uncertainties of transmittance and reflectance close to those met in our experiments. Neglection of the

reflectance, which is typical for popular approximations, makes the calculation of the real part of the liquid
refractive index impossible and introduces systematic errors to the calculations of the absorption coefficient.
Therefore, we calculate values of these systematic errors and we compare them to the uncertainties. This allows
us to determine the accuracy of popular approximations, particularly, we demonstrate that an approximation in
which the transmittance is normalized to the transmittance of a cuvette filled with pure non-absorbing solvent is

valid.

1. Introduction

Spectrophotometry is one of the most basic and common experi-
mental techniques in analytical chemistry. The quantity that is directly
measured is the transmittance T defined as this part of the intensity of
the incident light that passes through an investigated semi-transparent
sample. Transmittance can be measured for one particular wavelength
A or as a function of the wavelength in a finite spectral range. Knowledge
about T(4) dependence can be used just as it is, e.g. for material iden-
tification, or the transmittance can be further transformed into the
absorbance A in order to use the Beer-Lambert law [1,2]. A popular form
of this law states that the light absorbance of a solution, taken as the
decimal logarithm of transmittance, is proportional to the molar atten-
uation coefficient ¢ and the concentration of absorbing species c that are
diluted in a non-attenuating solvent, and to the optical path d. Formally:

A = —log,, T = ¢e-cd. (€]

The Beer-Lambert law allows for convenient (using the purely optical
method) determination of the value of the concentration of a chemical
species in a solution when its attenuation coefficient is known, or for
calculation of the attenuation coefficient of a chemical species diluted in
a solvent when its concentration is known. Limitations of the Beer-
Lambert law are nicely discussed in [3], whereas [4] underlines the
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problem of the shortcomings of the very simple optical model that is
silently assumed in Eq. (1). Briefly, Eq. (1) neglects all reflections in the
optical system as well as the existence of the cuvette surrounding the
investigated liquid. Because it is not possible to precisely calculate the
attenuation coefficient knowing only the transmittance, some system-
atic errors are introduced into the calculations. To the best of our
knowledge the most advanced analysis of the optical model of a liquid in
a cuvette, however still not strict, was done by Soares, who also pro-
posed “the correction of systematic errors from the reference liquid’s
spectral nonflatness as well as for the refractive-index discrepancies
between the sample and the reference liquids and for the multiple beam
reflections” [5].

In this paper, we present and discuss a rigorous model that describes
exactly the typical experimental setup used in spectrophotometry — a
cuvette filled with liquid (Fig. 1). We show how to calculate the complex
refractive index n of both the cuvette and the liquid from the intensity of
the transmitted I, and reflected I, light, and we analyze their un-
certainties. Next, we calculate what systematical errors are introduced
into the calculation of attenuation coefficient using Eq. (1), i.e. when
only transmittance is taken into account, for three cases: when the
reference measurement is performed for cuvette with a pure solvent
(non-absorbing, ¢ = 0), when the reference measurement is performed
for empty cuvette, and when the reference measurement is performed
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without cuvette and liquid.
2. Methods
2.1. Considered optical setup

Fig. 1 illustrates the considered experimental setup. It is a typical
configuration used in spectrophotometry, where the investigated liquid
is placed in a quartz cuvette. The cuvette is illuminated from the left side
by a beam of typically monochromatic light characterized by the in-
tensity I;. The incident light passes through four interfaces (air/quartz,
quartz/liquid, liquid/quartz, quartz/air) at which it can be reflected and
three media (quartz, liquid, quartz) in which it can be attenuated. Values
that are measured are intensities of light that is reflected from the whole
experimental setup I, and that that is transmitted through the whole
experimental setup I,. Because the dimensions of the quartz cuvette (~1
mm) are large in comparison to the wavelength of the incident light (UV,
VIS, NIR), we assume incoherent interference, which implies that we are
working with intensities and not with amplitudes. We do not make any
assumptions concerning the scale of reflections or attenuations, how-
ever, we assume that the light beam is perpendicular to all interfaces.
We also assume that the investigated liquid is homogeneous at least at
the scale of the incident light wavelength since we use the formalism of
electromagnetism of continuous media. In this work we do not consider
scattering, i.e. all the losses are attributed to the absorption. As a
consequence attenuation, extinction and absorption are equivalent
terms. The problem of separation of absorption and scattering co-
efficients from the extinction coefficient, including experimental tech-
nique, has been recently discussed in [6]. Meaning of all symbols used in
Fig. 1 will be introduced consecutively in the text.

2.2. Refractive index

The refractive index n is one of the possibilities to represent the
optical properties of matter. Particularly, complex refractive index n =
n; + inp, where m, ny € R, provides a convenient and complete
description of optical properties when absorption has to be taken into
account. Formally, & = e/eg = e, +ie, "2 = (g +in)> = (n? —n3) +
2in;ny, where ¢ is the permittivity, which we note is a complex value.

Since the value of the wave vector k = nky = %’:‘, the electric field in-

tensity of an electromagnetic plane wave that travels along x-axis can be
written as [7]:

E(X l) _ Eo.e—[(w/—kx) _ Eo.e—i(wl—nkgx) _ EO.e—[((ul—nlkgx—mzkox)
1) = = =

_ Eo.e—i(wt—nlku,x)e—nzkux.

(2)

Magnetic field intensity has a similar form. Above equation
straightforwardly illustrates the fact that the real part of refractive index
n; affects the phase of the plane wave whereas the imaginary part n,

medium 1
air ) medium 2
ny=1+0i quartz cuvette medium 3

Ny=ny+in,,
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determines space attenuation of the electric and magnetic field in-
tensities and is directly related to absorption coefficient defined as:
47m2

a= 2}12]{(, = 2 s
0

1
1(x) = Ioe ™" = Re(E x H) 3)

where asterisk (x) denotes complex conjugation. A medium is consid-
ered lossy when a > 0 or equivalently ny > 0.

In our work, we describe the optical properties of all media (medium
1 — air, medium 2 - quartz and medium 3 - liquid) by refractive indices
and we treat them as dielectrics. We note that we do not make any as-
sumptions on the scale of the absorption coefficients and thus both the
quartz cuvette and investigated liquid are described by complex
refractive indices. Low optical losses of quartz cuvette should result from
reference measurement and further calculations, not from a priori as-
sumptions. Only air is treated as lossless, however, it is not problematic
to make it lossy too.

2.3. Fresnel equations

When an electromagnetic plane wave incidents from medium 1,
characterized by refractive index n; = nj; + inja, in direction of me-
dium 2, characterized by refractive index ny = na; + ing., some part of
this wave is reflected and some part is transmitted. The strength of the
electric field of the reflected wave equals E, = ry5-Ej, the strength of the
magnetic field of the reflected wave equals H, = —r5-Hj, the strength of
the electric field of the transmitted wave equals E; = t;5-E;, and the
strength of the magnetic field of the transmitted wave equals H; = t15-Hj,
where r15 and t;5 are Fresnel reflection and transmission coefficients, E;

stands for strength of the electric field of the incident wave, fT = % =

%, and %“ = %jﬂ (please be aware of redefinition of the SI base units

in 2019). The exact equations for the 15 and t;5 coefficients are derived
from the boundary conditions for electric and magnetic fields at the
interface between two dielectric material and have the following forms:

2n,
2= .
ny +np

n—m

Lt+rp=ty m—mrp=mtyp = (C))

ny +np

Related intensity coefficients Ry, and T;, that link the time-averaged
power density flux I carried by the incident, reflected and transmitted
electromagnetic waves are usually defined as follows:

Ir 12

1, n;
* 12 21 *
ria [, = —= —12°1]; .

R]Z =
1,12 1i.]2 11

(5)

We also note that R stands for reflectance from the whole experi-
mental setup and equals R = %, whereas Ry; stands for reflectance on
particularly interface between medium k and [. Similarly, T stands for
transmittance through the whole experimental setup and equals T = f—:,
whereas T, stands for transmittance through particularly interface be-
tween medium k and L

incident light I;

investigated liquid

R;
S

reflected light I,

)

Ay
()

<}:|~T—
32

interfaces between media

N3=nz;+ins,
transmitted light I,
T A3 T, T.
B—> S—> 2>
jR32 R3Z> £R23 R2>
£
As 23 A,

Fig. 1. Schematics of experimental setup illustrating possible reflections and attenuations of the incident light.
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3. Rigorous model
3.1. Formalism

To mathematically describe light propagation in the optical setup
illustrated in Fig. 1 we use transfer matrix formalism. We assume
incoherent interference, which implies that we are working with in-
tensities and not with amplitudes. It is easy to modify this approach to
include coherent or partially coherent interference, as described in [8].

Let’s consider relations between intensities of the right-going (+)
and left-going (—) light on the left (L) and right (R) side of the interface
between medium 1 and medium 2 in a typical for transfer-matrix
method scheme:

Iy (1 —Ry (L ®)
Ix 2\ Ry TppTh —RpRy I,

Next, let’s consider changes in the intensity of light passing through
medium 2 from one interface to the second interface:

L A;D0 L
=1 15 )
I; 0 A ) \p
where A; = e~®'® stands for attenuation of the intensity, a for the
absorption coefficient of medium 2, and d, for the geometrical length

(thickness of the cuvette wall). Having that we can write full expression
linking the intensity of the incident, reflected and transmitted light:
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distance between walls inside the cuvette that equals d3 =2 mm, like in
our previous work [9]. Next, let’s assume that for the wavelength 1 =
500 nm we measured the intensity of reflected and transmitted light for
empty cuvette obtaining Rempy = 0.1138 and Tempy = 0.8799, and the
intensity of the reflected and transmitted light for cuvette filled with
unknown liquid obtaining Ryjjeq = 0.0436 and Tfipeq = 0.5630. Our goal
is to find the complex refractive index of the cuvette and the liquid.
First, we have to solve the following system of implicit equations:

Tempty = 08799 = M;ll (n21 s N2y 1, 0)

1 . an
Rempty = 0.1138 = My (21,120, 1,0)-M7, (121,122, 1,0)

This can be done using one of the many available mathematical
software, here we used Wolfram Mathematica v.12. As a results we get
ny = 1.43, and ny, = 9.58:1078. Using Eq. (7) we get @y = 2.4m™L.

Next, we have to solve a similar system of equations but this time for
filled cuvette:

Tfilled = 0.5630 = Mrll (1437 9581078, nsp, n32)
Reiea = 0.0436 = My, (1.43,9.58:107  n3y, n3p)-M ' (1.43,9.58-107% 3y, )
(12)

As a result we get n3; = 1.33, and n3, = 1.0-107°. Using Eq. (8) we

get az = 25Im™1.

4. Results

4.1. Empty cuvette

) I PR G L P PR E G
I, 2 \Ri TuTy —RuRy 0 A/ 7 \Ryn TuTn—RuRy 0 A

T71.< 1 —R>3 ><A;l O)T"( 1 —R» ><I[)
2 \Ry» TuTs — RpR; 0 A, "\Ry TuTp—RyRp 0

where As = e~®'% stands for attenuation of the intensity, as for the
absorption coefficient of medium 3 and ds for the geometrical length
(distance between walls inside the cuvette). Now we setl; = 1,I, = R,
I, =T, Ry and Ty according to Egs. (4) and (5), and Az and Az according
to Egs. (7) and (8). This reduces the number of unknown parameters to
four: two for quartz cuvette ny;and ng2, and two for the investigated
liquid n3; and ng;. It is convenient to rewrite Eq. (8) in the following
form:

1 _ My (n21,n22, 31, 1132)
R M21(Vl21,n227"317n32)

which led to the final formula:

Mzz(n217n22-,"31,"32)

My (na1, n2, n31, o) )(g) ©)

T = My (21, na, n31, 131) 4 10)
R =M, ("21-,1’1227 nsp, n32)~Mf]1 (”21,’1227 n317n32)
We note that technically, it is required to make the measurements
twice: the first time for empty cuvette, setting n3; =n;; = 1 and nzgy =
ni; = 0, in order to find of ny; and ny,; and the second time for filled
cuvette in order to find nj; and ns, using previously found values of
nyyand na,. Technically it is not problematic since many modern spec-
trophotometers are double beam (another name dual-beam).

3.2. Example

Let’s assume we are using a quartz cuvette manufactured by BIO-
SENS — model 1QS2 (2), with walls of the thickness d; = 1.25 mm and

, ®

Fig. 2 shows the results of the calculation of transmittance through
and reflectance from an empty cuvette (filled with air n; = 1, geomet-
rical dimensions like in the case of cuvette from Section 3.2) as a func-
tion of the real and imaginary part of its refractive index n,. We are
aware that a typical quartz cuvette can be described by the real part of n,
of the order 1.43, and the imaginary part of the order of 1077 or even
lower and the range of considered values is much larger than required,
but we want to illustrate trends occurring in this five-layer optical sys-
tem (air/quartz/air/quartz/air). Moreover, Fig. 2a can be used for direct
estimation of ny; and ng, from R and T for optical system with the same
thickness of walls regardless of the value of the optical length of the
interior. The main conclusion that can be drawn is that both trans-
mittance and reflectance depend significantly both on the real and
imaginary parts of the refractive index. Transmittance is most sensitive
to changes of ny; when ny; is in the range 1.53-1.59 depending on the
ngp value, and is most sensitive to changes of na; when ny, is close to
zero. Reflectance is most sensitive to changes of ny; when ny; is in the
range 1.53-1.70 depending on the nyy value, and is most sensitive to
changes of ny; when ny, is close to zero. Both transmittance and
reflectance start to be insensitive on ny; when of ny; approaches unity.

4.2. Uncertainty analysis — Derivatives

Despite our considerations being purely theoretical, it is not only
worth it but also necessary to analyze the uncertainties of the extracted
values of ny; and nyy, assuming conditions similar to this occurring in
real experiments, i.e. that Rempy and Tempy are measured directly and are
disturbed by Gaussian noise with zero mean value and standard devia-
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Fig. 2. (a) Dependence of the transmittance and reflectance (T,R) on the real and imaginary parts of the refractive index of a cuvette (nz;,nz2) in a case when the
cuvette is empty. (b) Dependence of the transmittance T or reflectance R on the real part of the refractive index of a cuvette ny; for selected values of the imaginary
part nz,. (c) Dependence of the transmittance T or reflectance R on the imaginary part of the refractive index of a cuvette ny, for selected values of the real part ny;.

tion value of 0.0025. Thus u(Rempry) = U(Tempy) = 0.0025, which well
describes our experimental setup [9]. The uncertainty of ny; and ny, can
be expressed as:
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Fig. 3. (a,c) Uncertainty of the real part u(ny;) of the refractive index of a cuvette and (b,d) uncertainty of the imaginary part u(ny,) of the refractive index of a
cuvette as a function of transmittance and reflectance (T, R) or equivalently as a function of the real and imaginary parts of the refractive index of a cuvette (np;,n2)
in a case when the cuvette is empty (filled with air). Results presented in (a) and (b) are obtained using a derivative approach, results presented in (c) and (d) are
obtained using Monte Carlo simulations. In all cases u(T) = u(R) = 0.0025.
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P 2 . P 2 . b. forany combinatiqn of ny; and ngy we calculateq t}}e reference Valueﬁ
u(ng) = < o ) W (Tempry) + ( 3R > 1? (Rempry ) (unaffected by noise) of Rempy and Tempy, this is exactly what is
i ey ) a13) presented in Fig. 2a;
oy \2 X onyn \° X c. for any combination of ny; and ny; we generated ten thousand pairs
u(ny) = \/ <m) u (Temmy) + (aRunply) u (Rmpty) of uncorrelated random numbers that have Gaussian distribution,
zero mean value, and 0.0025 standard deviation value;

The only problem is that derivatives of n,; and n,, with respect to d. for any combination of ny; and ny; we made a ten thousand numbers
Tempy and Rempy cannot be calculated directly since indeed there is an long set of noisy values of Rfmpty and Te#mpty by adding random
analytical expression for Ty (121, M22) and for Renpy (121, 7122) but there numbers (point ¢) to the reference values (point b);
is no analytical expression neither for 1z (Temptys Rempry) 1T fOT 125 (Termpy e. for any combination of ny; and n,; we calculated a ten thousands
Renpy) (they are implicit functions). A possible solution is to use the numbers long set of noisy values of nf;, and n, using Eq. (11) and
inverse function theorem that states that the Jacobian of the inverse : : .
function is the inverse Jacobian of the function, namely: noisy values ?f R;%mp[y and T:;p[y (point d) as input; .

f. for any combination of ny; and nys; we calculated a standard devia-
aTcmply aTcmply ﬂ ﬂ
. a(Tcmpl)'? Rcmm) _ Oz Onz J = 0(na1,n2) _ Menpsy - OReme (14)
0(na1,n) ORempty  ORempry 0(Temp[y7Remp[y) oy oy
anZ] anZZ aTempxy aRempty

Thus the calculation of the derivatives of the real and imaginary
parts of the refractive index with respect to transmittance and reflec-
tance is replaced by the calculation of the derivative of the transmittance
and reflectance with respect to real and imaginary parts of the refractive

index, proper matrix construction, matrix inversion, and matrix readout,
T empry

onzz

taking into account that for example and "T””‘ are in different
empty

7
places of the matrix J and J 1.

The results of uncertainty calculations are shown in Fig. 3a and
Fig. 3b. Concluding Fig. 3a one can see that the absolute value of the
uncertainty of the real part of the refractive index of the empty cuvette
rarely exceeds 0.02, except when ng; approaches unity, where depen-
dence of transmittance on ny; disappears. Dependence of uncertainty on
ng; is nonmonotonic and for every value of ny; there is a clear minimum
near ny; =~ 1.5 —2.0, which is in agreement with previous considerations
on derivatives. The higher value of ny,, the higher uncertainty, which is
also in agreement with previous considerations. Concluding Fig. 3b the
uncertainty value of the imaginary part of the refractive index rarely
exceeds 0.3-107°. The higher value of na1, the higher uncertainty, and
the higher value of ny, the higher uncertainty, however, the dependence
of the uncertainty on ny, is much larger than on ny;.

4.3. Uncertainty analysis — Monte Carlo

To further validate the uncertainty analysis we also perform Monte
Carlo simulations. The main reason for making such double-check is that
approach based on derivatives requires assumptions that derivatives of
the higher order than the first one can be neglected, which taking into
account the finite value of u(Tempy) and u(Rempy) can be doubtful,
especially in the case when the analyzed function is non-monotonic, has
extrema or saddle points. The exact procedure of Monte Carlo simula-
tion is listed below:

a. we defined range of variability of ny; and ngy to be 1.0 < ny; < 3.0
and 0 < ngy < 20-1079;

tion of a ten thousand numbers long set of noisy values of n}; and n,
(point e); this standard deviation is treated as the uncertainty u(ny; )
and u(nyy).

Results obtained using Monte Carlo simulations shown in Fig. 3c and
Fig. 3d are generally in agreement with the results obtained in an
approach based on derivatives, taking into account that they can be a
little bit noisy, which results from the limited set of generated and
analyzed data set. However, some differences emerge when ny; ap-
proaches unity.

4.4. Cuvette filled with investigated liquid

Fig. 4. illustrates the results of calculation of transmittance through
and reflection from a quartz cuvette (n, = 1.43 + 1077i, geometrical
details like in Section 3.2) filled with investigated liquid as a function of
the real and imaginary part of liquid’s refractive index ns. The range of
variability of n3; is 1.0 < n3; < 1.4 and n3; is 0 < nzp < 50-107°. The
maximal value of n3; was set to 1.4 since the real part of the refractive
index of a cuvette is 1.43 and results of transmittance and reflectance are
overlapping for values of n3; lower and higher than 1.43 (there are two
sets of values of n3; and ns, that give the same values of R and T, for
example {1,0} and {2.05,0}). Moreover, most aqueous solutions have
ng; ~ 1.33. What is striking in the results illustrated in Fig. 4, especially
when compared to the results illustrated in Fig. 2, is the fact that
transmittance almost does not depend on the real part of the refractive
index of the liquid and is almost linear on the logarithmic scale with the
imaginary part of the refractive index of the liquid, which means that T
exponentially depends on ns,. This answers the question of why even
simple approximations allow for a reasonable estimation of the value of
the imaginary part of the refractive index. As regards the reflectance
from the filled cuvette, it is the most sensitive to n3; when ns; ap-
proaches unity, and is the most sensitive to n3s, when n3, approaches
zero. The larger the values of ng; and ns,, the lower the sensitivity. It is
also worth noticing that reflectance from filled cuvette (e.g., with water)
is lower than from the empty one regardless of the value of n3,, and the
reflection further decreases when the absorption increases.
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Fig. 4. (a) Dependence of the transmittance and reflectance (T, R) on the real and imaginary parts of the refractive index of an investigated liquid (n3;, ns2) in a case
when the cuvette is characterized by the refractive index n, = 1.43 + 1-1077i. (b) Dependence of the transmittance T or reflectance R on the real part of the
refractive index of an investigated liquid ns; for selected values of the imaginary part ns,. (c) Dependence of the transmittance T or reflectance R on the imaginary
part of the refractive index of an investigated liquid ng, for selected values of the real part ng;.
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Fig. 5. (a,c) Uncertainty of the real part u(ns;) of the refractive index of an investigated liquid and (b,d) uncertainty of the imaginary part u(nsz) of the refractive
index of an investigated liquid as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary part of the refractive index
of an investigated liquid (ns;,ns2) in a case when the cuvette is characterized by the refractive index ny = 1.43 + 1-1077i. The results presented in (a) and (b) are
obtained using a derivative approach, the results presented in (c) and (d) are obtained using Monte Carlo simulations. In all cases u(T) = u(R) = 0.0025.
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4.5. Uncertainty analysis — Derivatives

Uncertainty calculations of extracted values of n3; and n3, are per-
formed in a similar manner that in the case of the empty cuvette,
however, are a little bit more complicated since first it is required to
calculate ny; and ny; from Rempy and Tempy and the second time to
calculate n3; and nszy from Ryeq and Tyeq and using the previously found
values of ny; and nyy. The exact expressions used for uncertainty cal-
culations are as follows:
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using Monte Carlo simulations. We note, however, that here we made
both the transmittance and reflectance from the empty cuvette (Rfmply,

emply) and from the cuvette filled with liquid (RY,,.;, Ti.q) n0isy. The
results are shown in Fig. 5c and Fig. 5d, and are generally in agreement
with results obtained in the approach based on derivatives, similarly like
in the case of the empty cuvette, and start to differ when n3; approaches
1.4, which is close to ny; = 1.43.

4.7. Cuvette dimensions

0}131
u Vlﬂ
aTcmply

> Tans)  (22) ' (Rens) + (22) 2 () + (25) )
empty aRcmply u empty aT(’i]]cd u filled aRl'illcd u filled

(15)

0n32
u }112
0Tcmply

Jacobian matrix and inverse Jacobian matrix have the following
forms:

aTcmply aTcmply aTcmply aTcmply
6n21 anzz ()n31 0n32

aRe:mply aRempty aRemply aRe:mply
J= a(Temp(y,Remplw Tfillednyilled) anz] anzz 0)131 an32

a(”Zly”ZZs"Sl -,"32)

aTl'ill(:d aﬂ'illcd a’rﬁ]]cd
0n21 6n22 0}131 0n32

ORfinea  ORfitea ORfiea ORtittea
0n21 (3n22 an31 0n32

ony, Ony, Ony, ony,
aTemply aRemp(y ani]]ed aRfllled

0n22 ()}122 6n22 l)l’lzz
aTemply aRemp(y ani]]ed aRfilled

J o a(”211n227n31~n32) _

d (Temply i Remply ) Tﬁ]]ed i Rfilled )

0n31 ()}131 6n31 0n31
aTemply aRemp(y ani]]ed aRﬁlled

aﬂzz 0n32 6n32 6n32

0Temp!y aRe:mply aTﬁ]]ed ()Rfilled

(16)

The results of uncertainty calculations are shown in Fig. 5a and
Fig. 5b. Concluding Fig. 5a one can see that the uncertainty of the real
part of the liquid’s refractive index depends mostly on the value of the
reflectance, whereas the imaginary part of the liquid’s refractive index
depends mostly on the transmittance value. It is a qualitatively different
result than in the case of an empty cuvette. Moreover, the scale of
changes of absolute values of uncertainties is more than twice as large as
in the case of the empty cuvette, which however, is quite intuitive.

4.6. Uncertainty analysis — Monte Carlo

Similarly like in the case of the empty cuvette, we calculated what
the uncertainties of the extracted parameters of investigated liquid are

0n32 2 2 6n32 2 2 6n32 2 2
T . R T Ry
enPW) * (aRcmply) ! ( emplY) * OT¥illea g ( lned) * ORtiltea ! ( “lw)

In order to calculate the real and imaginary parts of the refractive
indices of the quartz cuvette and the investigated liquid one has to
provide values of the transmittance and reflectance from the empty and
filled cuvette. However, there are two more values which have to be
known before performing the final calculations and which are related to
the geometrical dimensions of the cuvette: the cuvette wall thickness dz
and the distance between cuvette walls d;. These two geometrical pa-
rameters affect the absorption of the light when passing through media 2
(quartz) because A, = e *%_ and media 3 (investigated liquid) because
Az = e %%, Thus u(dy) an u(ds) will contribute primarily the un-
certainties of the imaginary parts of the refractive indices: u(ny2) and
u(nz2) whereas the uncertainties of the real parts of the refractive indices
will be affected only slightly.

Formally, to calculate the uncertainties of the real and imaginary
parts of the refractive index of the empty cuvette we can use the
following formulas:

_ anZl _ anZl aTemp[y a’/121 aRemply
M(HZI) B adZ u( 2) B ’aTemply adZ aRemply adz u(dZ) (17)
onm, | ony, aTCmply Onyy 0Rcmply
dy) = -u(d:
uln) = |5 ) = o = od, TRy s | %)

Such indirect calculations are required because there is no analytical
expression linking n,; and ny, with d, but there are analytical expres-
sions for 0Tempy/0d, and for dRempyy/0d, as well as for the remaining
partial derivatives as was demonstrated in Section 4.2 Eq. (14). We also
note that in the case of lossless medium 1 (air) there is no influence of
the u(ds) on u(ny; ) and u(n,,) since a; = 0 and therefore A; = e wds =1
despite any value of d. Fig. 6a and b illustrate results of calculations of
u(ny;) and u(nyy) for an arbitrary value of u(d,) that equals 0.01 mm. As
can be seen the contribution from the geometrical dimension uncer-
tainty to the uncertainty of the real part of the refractive index of the
empty cuvette is completely negligible, but in the case of the imaginary
part of the refractive index contribution from the geometrical dimension
uncertainty is significant and approximately equals u(ny;) ~ u(dz)/d,-
Ny = 0.008'“22.

Calculation of the uncertainties of the real and imaginary parts of the
refractive index of the investigated liquid can be performed in a similar
manner than previously taking into account that this time u(nz;) and
u(ns2) will depend both on u(d) an u(ds). Formally:
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ons\’ ) ona\’ » 0n3 OTempy ~ On3i ORenmpy — Onz; OTgjjeq
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In the case of the cuvette filled with liquid, similarly like in the case
of empty cuvette, each of the partial derivatives dns;/ddy, dnz;/dds,
Onsz/ddz, onsz/dds has to be expanded into a sum of four products,
which part of can be analytically calculated and part has to be calculated
using inverse Jacobian matrix, as described in Section 4.5 Eq. (16).
Fig. 6¢ and d illustrate results of calculations of u(ns; ) and u(ns) for an
arbitrary value of u(dy) and u(ds) that equal 0.01 mm. As can be seen the
contribution from the geometrical dimension uncertainty to the uncer-
tainty of the real part of the refractive index of the investigated liquid is
completely negligible, but in the case of the imaginary part of the
refractive index contribution from the geometrical dimension
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uncertainty is significant and approximately equals u(nz2) ~ u(ds)/ds-
Nga = 0.005'“22.

Results of the Monte Carlo simulations (not shown) are in agreement
with results obtained in the approach based on derivatives, similarly like
in the case of the empty and filled cuvette.

5. Comparison of the rigorous model with popular
approximations

Rigorous calculations of optical properties of investigated liquid
require values of both the transmittance and reflectance. Neglection of
the reflectance, which is typical for popular approximations, makes the
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Fig. 6. Contribution of the geometrical uncertainty to (a) the uncertainty of the real part u(ng;) of the refractive index of a cuvette and (b) the uncertainty of the
imaginary part u(ny,) of the refractive index of a cuvette as a function of transmittance and reflectance (T, R) or equivalently as a function of the real and imaginary
parts of the refractive index of a cuvette (n21,ny2) in a case when the cuvette is empty (filled with air). Contribution of the geometrical uncertainty to (c) the un-
certainty of the real part u(ns;) of the refractive index of an investigated liquid and (d) the uncertainty of the imaginary part u(nsz) of the refractive index of an
investigated liquid as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary part of the refractive index of an
investigated liquid (n31,ns») in a case when the cuvette is characterized by the refractive index np = 1.43 + 1-1077i. In all cases u(dz) = u(ds) = 0.01mm.
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calculation of the real part of the liquid refractive index impossible and
introduces systematic errors to the calculations of the absorption coef-
ficient. However, having an rigorous optical model we are able to
calculate these systematic errors exactly and further compare them with
the uncertainties. Such calculations will answer the question how ac-
curate are the popular approximation and if they are valid.

5.1. Differences in the measurement procedure

Most of the commercially available spectrophotometric setups
measures only the transmittance or relative transmittance. For example,
in a double-beam spectrophotometers the light beam is divided into two
same intensity beams. The first of the beams, the reference beam, passes
undisturbed (there is no sample in the optical path) or through the
reference sample (empty cuvette, cuvette filled with non-absorbing
solvent). The second of the beams passes through the investigated
sample (cuvette filled with the investigated liquid). Thus, the absor-
bance of the investigated solute (let’s assume we want to use the Beer-
Lambert law) can be easily estimated using the following formulas:

Asolute = EsoluteCsolute"d = Asolute"d

approximaton 1
approximaton 2 ,
approximaton 3

—10g ;0 Tritiea (Csotute ) / To
~ _loglonilled (Csulute)/Temply
—10g,0Ttitied (Csotute ) / Ttitted (Csotue = 0)

19)

where Ty is the transmittance value in a case when there is no sample in
the optical path of the reference beam, Tempy is the transmittance value
in a case when there is an empty cuvette in the optical path of the
reference beam, and Tiijjeq (Csome = 0) is the transmittance value in a case
when there is a cuvette filled with non-absorbing solvent in the optical
path of the reference beam. Other words, these three reference values —
To, Tempty and Tijed (Csore = 0), are used to normalize the transmittance
through the cuvette filled with investigated liquid Tijeq(c). Such a
normalization is a big advantage of the modern method for estimating
the absorbance of the investigated solute since it makes the method
calibration-free (because the absolute value of the transmittance is not
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required). The main disadvantage is that the modern method tries to
describe properties of an optical system that is parametrized by four
independent numbers — ng;, Ny, ng;, and ngg, only by two measured
values, which undoubtedly leads to some undefined systematic errors.

Presented in this work rigorous model does not introduce mentioned
above systematic errors, because it describes properties of an optical
system parametrized by four independent numbers — ny;, nga, ns;, and
N3, by four measured values — Tempty, Rempys Titled> @nd Ryijeq. And this is
an advantage. The main disadvantage of our approach is a more
advanced measurement procedure, which requires knowledge of the
absolute values of the reflection from empty Rempy and filled cuvette
Ryined, Which requires proper calibration (e.g. measurements using a
material with precisely known parameters).

5.2. Differences in the definitions of the absorption coefficient

We also would like to point out that there is some ambiguity in the
literature concerning the definition of absorbance and absorption coef-
ficient. Formally, the absorbance A and absorption coefficient a are
often defined using two similar expressions:

A =—logT=¢-cd=d-deT=10" =107 =10 20)

A= T=¢cd=ad deT=c =¢t<d=pad ’
where A" = A'Inl0and @ = o -In10. This ambiguity is not problematic
but requires consequence in using chosen definition. Typically in spec-
trophotometry of liquids the decadic absorption coefficient o is used,
whereas in papers more focused on physics or optics the Napierian ab-
sorption coefficient a” is a more popular choice. In this work we used the
latter definition since we start our consideration from the definition of
the electric field intensity of an electromagnetic plane wave that travels
along x-axis — see Eq. (2).

5.3. Calculations of the systematic errors

The exact procedure of calculation of systematical errors introduced
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systematic errors introduced into calculations of n3, by three approximations popular in the literature.
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into the calculation of attenuation coefficient using three popular ap-
proximations consists of four points:

a. we defined the range of variability of n3; and n3; to be 1.0 < ng; <
1.4 and 0 < n3y < 50-107%; we assumed that ds — optical path length
in liquid equals 2 mm;

b. for any combination of n3; and nz; we calculated the values of Ryijeq
and Tijjeq, assuming n, = 1.43 + 10775

c. for any combination of ns; and ns; we calculated the values of nzy
using three popular approximations:

al
o nih = —74InTieq
2 A
b ngz = 7m'lnTﬁllcd/Tcmp[y
a3 _
o %5 = —g57InTtinea/ Ttitied nyp=0

d. for any combination of nz; and nz, we calculated systematic error

twice, first time as an absolute error <‘3>? = n35*?

. . al,23 n;;‘”fnsz
second time as a relative error 7,3, = =2, —.

—n3o and the

The results of all calculations are depicted in Fig. 7. As can be seen in
Fig. 7a the values of the absolute error <%}, introduced into the calcu-
lations of n3, by the first approximation, in which no renormalization of
transmittance is made, is in the 1.107°-3.107® range, and depends
mostly on the real part of liquid’s refractive index. The values of the
relative systematic error 721, are depicted in Fig. 7d, and as can be seen
73, exceeds 200% for low values of nz,, equal approximately 10%-20%
for moderate values of n3; understood as included in the
10-10-%-20-107° range, and achieve few percents for the highest values
of ngy. The relative systematic error depends more on nsy than ns;.
Comparing values of the absolute systematic error €2, depicted in
Fig. 7a with values of uncertainties u(ns;) depicted in Fig. 5b, we see
that the values of €3}, are always above values of u(ns,), which means
that the results obtained using the first of the popular approximations
are significantly affected by the imperfections of this approximation. We
note that the contribution to this systematic error is not only the neglect
of the existence of the cuvette but also the neglect of all reflections in the
considered optical system. In other words, the first model assumes ab-
sorption by a nonreflecting slab of liquid.

In Fig. 7b one can find results of calculations of the values of the
absolute error introduced into calculations of ns; using the second
approximation, in which the transmittance is normalized to the trans-
mittance of the empty cuvette. The values of <2, are in the
—1.2:107%-0-10-° range, depend mostly on ns;, and contrary to the first
model for which values of ns, are overestimated, here almost all values
are underestimated. It results from the fact that the reflection from the
empty cuvette is larger than that from the filled one. The values of the
module of the relative systematic error 72, are depicted in Fig. 7e, and
as can be seen %2, exceed 200% for low values of ns,, do not exceed 10%
for moderate values of n3,, and drop below one percent for the highest
values of ns,. The relative systematic error depends both on ng; and ns,
and for low values of n3; has the lowest value. Comparing the values of
the absolute systematic error €22, depicted in Fig. 7b with the values of
uncertainties u(ns;) depicted in Fig. 5b, we see that values of €2, are
above values of u(nsz) for higher values of ns;, ef‘éz are below values of
u(nsy) for low values of n3; and high values of ns,, and E:%Z are of the
same order than u(nsz) for low values of n3; and low values of ngy. This
means that the results obtained using the second of the popular ap-
proximations can be also significantly affected by the imperfections of
this approximation, particularly for aqueous solutions (n3; ~ 1.33) the
considered approximation is not optimal.

In Fig. 7c one can find results of the calculations of the values of the
absolute error introduced into calculations of nsy; using the third
approximation, in which transmittance is normalized to the trans-
mittance of the cuvette filled with a liquid with the same ng; but with no
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Fig. 8. Comparison of different contribution to the uncertainty of the imagi-
nary part of the liquids refractive index u(nsz) with relative systematic errors
’731353 introduced into calculations of ng, by three approximations popular in

the literature for quartz cuvette and aqueous solutions n3; = 1.33.

absorption. Typically it is a pure (non-absorbing) solvent. The values of
€23, do not exceed 0.08-10%, and depend both on n3 and nsy. The
values of 73, do not exceed 0.008 (0.8%) and also depend both on ns;
and nsy. Comparing the values of the absolute systematic error €33,
depicted in Fig. 7c with values of uncertainties u(nsz ) depicted in Fig. 5b,
we see that the values of eﬁ%z are significantly below the values of u(nsz),
which means that the third approximation can be used for reliable cal-
culations of nsy, assuming measurement uncertainty of the trans-
mittance and reflectance to be 0.0025.

5.4. Aqueous solutions

At the end it is worth to compare different contribution to the un-
certainty of the imaginary part of the liquids refractive index u(ns;) with
relative systematic errors ;2 introduced into calculations of ns, by
three approximations popular in the literature for quartz cuvette char-
acterized by ny = 1.43+1-1077i and in the case of aqueous solutions
ns; = 1.33. As can be seen in Fig. 8 the relative systematic errors
introduced by the first and second approximations to ns, value are
typically one order of magnitude larger than the measurement uncer-
tainty u(nsz), except for the largest values of ns, but the relative sys-
tematic errors introduced by the third approximations to ns, value are at
least one order of magnitude smaller than the measurement uncertainty

u(n32 ) .
6. Conclusions

Development of a rigorous optical model of a cuvette filled with
liquid allowed us for validation of three popular approximations used in
the literature for calculation of absorption, or equivalently of nsz;. We
demonstrated what the differences in obtained results are when
employing different approximations, we compared them with estimated
uncertainties, and we showed that the third approximation yields very
accurate results, i.e. systematic errors introduced by this method can be
at least a few times smaller than the measurement uncertainties. We
point out that the collation of the systematic errors with the un-
certainties is crucial in this conclusion since only this way one is allowed
to say what a significant difference is and what difference can be
neglected. We also note that our conclusions are not absolute, i.e. they
are related to our experimental setup and to measurement uncertainties
of R and T that equal 0.0025; for other experimental setups character-
ized by different values of reflectance and transmittance uncertainties
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conclusions can be different, e.g. the difference between our strict model
and the most precise models from the literature can be significant, thus
invalidating the closest approximation.
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