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Measurements of optical properties of liquids in a quartz cuvette: Rigorous 
model, uncertainty analysis and comparison with popular approximations 
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A B S T R A C T   

In this paper we construct and comprehensively analyze the strict optical model of a quartz cuvette filled with 
investigated liquid, that is typically used in spectrophotometry measurements. We do not make any assumptions 
concerning the scale of reflections or attenuations but we assume no scattering. We perform uncertainty analysis 
assuming uncertainties of transmittance and reflectance close to those met in our experiments. Neglection of the 
reflectance, which is typical for popular approximations, makes the calculation of the real part of the liquid 
refractive index impossible and introduces systematic errors to the calculations of the absorption coefficient. 
Therefore, we calculate values of these systematic errors and we compare them to the uncertainties. This allows 
us to determine the accuracy of popular approximations, particularly, we demonstrate that an approximation in 
which the transmittance is normalized to the transmittance of a cuvette filled with pure non-absorbing solvent is 
valid.   

1. Introduction 

Spectrophotometry is one of the most basic and common experi-
mental techniques in analytical chemistry. The quantity that is directly 
measured is the transmittance T defined as this part of the intensity of 
the incident light that passes through an investigated semi-transparent 
sample. Transmittance can be measured for one particular wavelength 
λ or as a function of the wavelength in a finite spectral range. Knowledge 
about T(λ) dependence can be used just as it is, e.g. for material iden-
tification, or the transmittance can be further transformed into the 
absorbance A in order to use the Beer-Lambert law [1,2]. A popular form 
of this law states that the light absorbance of a solution, taken as the 
decimal logarithm of transmittance, is proportional to the molar atten-
uation coefficient ε and the concentration of absorbing species c that are 
diluted in a non-attenuating solvent, and to the optical path d. Formally: 

A = − log10T = ε⋅c⋅d. (1) 

The Beer-Lambert law allows for convenient (using the purely optical 
method) determination of the value of the concentration of a chemical 
species in a solution when its attenuation coefficient is known, or for 
calculation of the attenuation coefficient of a chemical species diluted in 
a solvent when its concentration is known. Limitations of the Beer- 
Lambert law are nicely discussed in [3], whereas [4] underlines the 

problem of the shortcomings of the very simple optical model that is 
silently assumed in Eq. (1). Briefly, Eq. (1) neglects all reflections in the 
optical system as well as the existence of the cuvette surrounding the 
investigated liquid. Because it is not possible to precisely calculate the 
attenuation coefficient knowing only the transmittance, some system-
atic errors are introduced into the calculations. To the best of our 
knowledge the most advanced analysis of the optical model of a liquid in 
a cuvette, however still not strict, was done by Soares, who also pro-
posed “the correction of systematic errors from the reference liquid’s 
spectral nonflatness as well as for the refractive-index discrepancies 
between the sample and the reference liquids and for the multiple beam 
reflections” [5]. 

In this paper, we present and discuss a rigorous model that describes 
exactly the typical experimental setup used in spectrophotometry – a 
cuvette filled with liquid (Fig. 1). We show how to calculate the complex 
refractive index n of both the cuvette and the liquid from the intensity of 
the transmitted It and reflected Ir light, and we analyze their un-
certainties. Next, we calculate what systematical errors are introduced 
into the calculation of attenuation coefficient using Eq. (1), i.e. when 
only transmittance is taken into account, for three cases: when the 
reference measurement is performed for cuvette with a pure solvent 
(non-absorbing, c = 0), when the reference measurement is performed 
for empty cuvette, and when the reference measurement is performed 
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without cuvette and liquid. 

2. Methods 

2.1. Considered optical setup 

Fig. 1 illustrates the considered experimental setup. It is a typical 
configuration used in spectrophotometry, where the investigated liquid 
is placed in a quartz cuvette. The cuvette is illuminated from the left side 
by a beam of typically monochromatic light characterized by the in-
tensity Ii. The incident light passes through four interfaces (air/quartz, 
quartz/liquid, liquid/quartz, quartz/air) at which it can be reflected and 
three media (quartz, liquid, quartz) in which it can be attenuated. Values 
that are measured are intensities of light that is reflected from the whole 
experimental setup Ir and that that is transmitted through the whole 
experimental setup It. Because the dimensions of the quartz cuvette (~1 
mm) are large in comparison to the wavelength of the incident light (UV, 
VIS, NIR), we assume incoherent interference, which implies that we are 
working with intensities and not with amplitudes. We do not make any 
assumptions concerning the scale of reflections or attenuations, how-
ever, we assume that the light beam is perpendicular to all interfaces. 
We also assume that the investigated liquid is homogeneous at least at 
the scale of the incident light wavelength since we use the formalism of 
electromagnetism of continuous media. In this work we do not consider 
scattering, i.e. all the losses are attributed to the absorption. As a 
consequence attenuation, extinction and absorption are equivalent 
terms. The problem of separation of absorption and scattering co-
efficients from the extinction coefficient, including experimental tech-
nique, has been recently discussed in [6]. Meaning of all symbols used in 
Fig. 1 will be introduced consecutively in the text. 

2.2. Refractive index 

The refractive index n is one of the possibilities to represent the 
optical properties of matter. Particularly, complex refractive index n =

n1 + in2, where n1, n2 ∈ R, provides a convenient and complete 
description of optical properties when absorption has to be taken into 
account. Formally, εr = ε/ε0 = ε′

r + iε′ ′=n
r 2 = (n1 + in2)

2
=
(
n2

1 − n2
2
)
+

2in1n2, where ε is the permittivity, which we note is a complex value. 
Since the value of the wave vector k = nk0 = 2πn

λ0
, the electric field in-

tensity of an electromagnetic plane wave that travels along x-axis can be 
written as [7]: 

E(x, t) = E0⋅e− i(ωt− kx) = E0⋅e− i(ωt− nk0x) = E0⋅e− i(ωt− n1k0x− in2k0x)

= E0⋅e− i(ωt− n1k0x)e− n2k0x. (2) 

Magnetic field intensity has a similar form. Above equation 
straightforwardly illustrates the fact that the real part of refractive index 
n1 affects the phase of the plane wave whereas the imaginary part n2 

determines space attenuation of the electric and magnetic field in-
tensities and is directly related to absorption coefficient defined as: 

I(x) = I0e− α⋅x I =
1
2

Re(E × H⋆) α = 2n2k0 =
4πn2

λ0
, (3)  

where asterisk (⋆) denotes complex conjugation. A medium is consid-
ered lossy when α > 0 or equivalently n2 > 0. 

In our work, we describe the optical properties of all media (medium 
1 – air, medium 2 – quartz and medium 3 – liquid) by refractive indices 
and we treat them as dielectrics. We note that we do not make any as-
sumptions on the scale of the absorption coefficients and thus both the 
quartz cuvette and investigated liquid are described by complex 
refractive indices. Low optical losses of quartz cuvette should result from 
reference measurement and further calculations, not from a priori as-
sumptions. Only air is treated as lossless, however, it is not problematic 
to make it lossy too. 

2.3. Fresnel equations 

When an electromagnetic plane wave incidents from medium 1, 
characterized by refractive index n1 = n11 + in12, in direction of me-
dium 2, characterized by refractive index n2 = n21 + in22, some part of 
this wave is reflected and some part is transmitted. The strength of the 
electric field of the reflected wave equals Er = r12⋅EI, the strength of the 
magnetic field of the reflected wave equals Hr = − r12⋅HI, the strength of 
the electric field of the transmitted wave equals Et = t12⋅EI, and the 
strength of the magnetic field of the transmitted wave equals Ht = t12⋅HI, 
where r12 and t12 are Fresnel reflection and transmission coefficients, EI 

stands for strength of the electric field of the incident wave, Ei
Hi

= Er
Hr

=

376.7Ω
n1

, and Et
Ht
= 376.7Ω

n2 
(please be aware of redefinition of the SI base units 

in 2019). The exact equations for the r12 and t12 coefficients are derived 
from the boundary conditions for electric and magnetic fields at the 
interface between two dielectric material and have the following forms: 

1 + r12 = t12 n1 − n1r12 = n2t12 r12 =
n1 − n2

n1 + n2
t12 =

2n1

n1 + n2
. (4) 

Related intensity coefficients R12 and T12 that link the time-averaged 
power density flux I carried by the incident, reflected and transmitted 
electromagnetic waves are usually defined as follows: 

R12 =
Ir,12

Ii,12
= r12⋅r⋆

12 T12 =
It,12

Ii,12
=

n21

n11
⋅t12⋅t⋆

12 . (5) 

We also note that R stands for reflectance from the whole experi-
mental setup and equals R = Ir

Ii
, whereas Rkl stands for reflectance on 

particularly interface between medium k and l. Similarly, T stands for 
transmittance through the whole experimental setup and equals T = It

Ii
, 

whereas Tkl stands for transmittance through particularly interface be-
tween medium k and l. 

Fig. 1. Schematics of experimental setup illustrating possible reflections and attenuations of the incident light.  
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3. Rigorous model 

3.1. Formalism 

To mathematically describe light propagation in the optical setup 
illustrated in Fig. 1 we use transfer matrix formalism. We assume 
incoherent interference, which implies that we are working with in-
tensities and not with amplitudes. It is easy to modify this approach to 
include coherent or partially coherent interference, as described in [8]. 

Let’s consider relations between intensities of the right-going (+) 
and left-going (− ) light on the left (L) and right (R) side of the interface 
between medium 1 and medium 2 in a typical for transfer-matrix 
method scheme: 
(

I+1R

I −1R

)

= T − 1
12 ⋅
(

1 − R21
R12 T12T21 − R12R21

)

⋅

(
I+2L

I−2L

)

(6) 

Next, let’s consider changes in the intensity of light passing through 
medium 2 from one interface to the second interface: 
(

I+2L

I −2L

)

=

(
A− 1

2 0
0 A2

)

⋅

(
I+2R

I−2R

)

, (7)  

where A2 = e− α2⋅d2 stands for attenuation of the intensity, α2 for the 
absorption coefficient of medium 2, and d2 for the geometrical length 
(thickness of the cuvette wall). Having that we can write full expression 
linking the intensity of the incident, reflected and transmitted light:  

where A3 = e− α3⋅d3 stands for attenuation of the intensity, α3 for the 
absorption coefficient of medium 3 and d3 for the geometrical length 
(distance between walls inside the cuvette). Now we set Ii = 1, Ir = R, 
It = T, Rkl and Tkl according to Eqs. (4) and (5), and A2 and A3 according 
to Eqs. (7) and (8). This reduces the number of unknown parameters to 
four: two for quartz cuvette n21and n22, and two for the investigated 
liquid n31 and n32. It is convenient to rewrite Eq. (8) in the following 
form: 
(

1
R

)

=

(
M11(n21, n22, n31, n32) M12(n21, n22, n31, n32)

M21(n21, n22, n31, n32) M22(n21, n22, n31, n32)

)

⋅
(

T
0

)

, (9)  

which led to the final formula: 

T = M− 1
11 (n21, n22, n31, n32)

R = M21(n21, n22, n31, n32)⋅M− 1
11 (n21, n22, n31, n32)

. (10) 

We note that technically, it is required to make the measurements 
twice: the first time for empty cuvette, setting n31 = n11 = 1 and n32 =

n12 = 0, in order to find of n21 and n22; and the second time for filled 
cuvette in order to find n31 and n32 using previously found values of 
n21and n22. Technically it is not problematic since many modern spec-
trophotometers are double beam (another name dual-beam). 

3.2. Example 

Let’s assume we are using a quartz cuvette manufactured by BIO-
SENS – model 1QS2 (2), with walls of the thickness d2 = 1.25 mm and 

distance between walls inside the cuvette that equals d3 = 2 mm, like in 
our previous work [9]. Next, let’s assume that for the wavelength λ =

500 nm we measured the intensity of reflected and transmitted light for 
empty cuvette obtaining Rempty = 0.1138 and Tempty = 0.8799, and the 
intensity of the reflected and transmitted light for cuvette filled with 
unknown liquid obtaining Rfilled = 0.0436 and Tfilled = 0.5630. Our goal 
is to find the complex refractive index of the cuvette and the liquid. 

First, we have to solve the following system of implicit equations: 

Tempty = 0.8799 = M− 1
11 (n21, n22, 1, 0)

Rempty = 0.1138 = M21(n21, n22, 1, 0)⋅M− 1
11 (n21, n22, 1, 0)

. (11) 

This can be done using one of the many available mathematical 
software, here we used Wolfram Mathematica v.12. As a results we get 
n21 = 1.43, and n22 = 9.58⋅10− 8. Using Eq. (7) we get α2 = 2.4m− 1. 

Next, we have to solve a similar system of equations but this time for 
filled cuvette: 

Tfilled = 0.5630 = M− 1
11

(
1.43, 9.58⋅10− 8, n31, n32

)

Rfilled = 0.0436 = M21
(
1.43, 9.58⋅10− 8, n31, n32

)
⋅M− 1

11

(
1.43, 9.58⋅10− 8, n31, n32

) .

(12) 

As a result we get n31 = 1.33, and n32 = 1.0⋅10− 5. Using Eq. (8) we 
get α3 = 251m− 1. 

4. Results 

4.1. Empty cuvette 

Fig. 2 shows the results of the calculation of transmittance through 
and reflectance from an empty cuvette (filled with air n1 = 1, geomet-
rical dimensions like in the case of cuvette from Section 3.2) as a func-
tion of the real and imaginary part of its refractive index n2. We are 
aware that a typical quartz cuvette can be described by the real part of n2 

of the order 1.43, and the imaginary part of the order of 10− 7 or even 
lower and the range of considered values is much larger than required, 
but we want to illustrate trends occurring in this five-layer optical sys-
tem (air/quartz/air/quartz/air). Moreover, Fig. 2a can be used for direct 
estimation of n21 and n22 from R and T for optical system with the same 
thickness of walls regardless of the value of the optical length of the 
interior. The main conclusion that can be drawn is that both trans-
mittance and reflectance depend significantly both on the real and 
imaginary parts of the refractive index. Transmittance is most sensitive 
to changes of n21 when n21 is in the range 1.53–1.59 depending on the 
n22 value, and is most sensitive to changes of n22 when n22 is close to 
zero. Reflectance is most sensitive to changes of n21 when n21 is in the 
range 1.53–1.70 depending on the n22 value, and is most sensitive to 
changes of n22 when n22 is close to zero. Both transmittance and 
reflectance start to be insensitive on n21 when of n21 approaches unity. 

4.2. Uncertainty analysis – Derivatives 

Despite our considerations being purely theoretical, it is not only 
worth it but also necessary to analyze the uncertainties of the extracted 
values of n21 and n22, assuming conditions similar to this occurring in 
real experiments, i.e. that Rempty and Tempty are measured directly and are 
disturbed by Gaussian noise with zero mean value and standard devia-

(
Ii

Ir

)

= T − 1
12 ⋅
( 1 − R21

R12 T12T21 − R12R21

)

⋅
(A− 1

2 0

0 A2

)

⋅T − 1
23 ⋅
( 1 − R32

R23 T23T32 − R23R32

)

⋅
(A− 1

3 0

0 A3

)

⋅

T − 1
32 ⋅
( 1 − R23

R32 T32T23 − R32R23

)

⋅
(A− 1

2 0

0 A2

)

⋅T − 1
21 ⋅
( 1 − R12

R21 T21T12 − R21R12

)

⋅
(

It

0

) , (8)   
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tion value of 0.0025. Thus u
(
Rempty

)
= u

(
Tempty

)
= 0.0025, which well 

describes our experimental setup [9]. The uncertainty of n21 and n22 can 
be expressed as: 

Fig. 2. (a) Dependence of the transmittance and reflectance (T,R) on the real and imaginary parts of the refractive index of a cuvette (n21, n22) in a case when the 
cuvette is empty. (b) Dependence of the transmittance T or reflectance R on the real part of the refractive index of a cuvette n21 for selected values of the imaginary 
part n22. (c) Dependence of the transmittance T or reflectance R on the imaginary part of the refractive index of a cuvette n22 for selected values of the real part n21. 

Fig. 3. (a,c) Uncertainty of the real part u(n21) of the refractive index of a cuvette and (b,d) uncertainty of the imaginary part u(n22) of the refractive index of a 
cuvette as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary parts of the refractive index of a cuvette (n21, n22)

in a case when the cuvette is empty (filled with air). Results presented in (a) and (b) are obtained using a derivative approach, results presented in (c) and (d) are 
obtained using Monte Carlo simulations. In all cases u(T) = u(R) = 0.0025. 
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u(n21) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n21

∂Tempty

)2

u2( Tempty
)
+

(
∂n21

∂Rempty

)2

u2( Rempty
)

√

u(n22) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n22

∂Tempty

)2

u2( Tempty
)
+

(
∂n22

∂Rempty

)2

u2( Rempty
)

√ . (13) 

The only problem is that derivatives of n21 and n22 with respect to 
Tempty and Rempty cannot be calculated directly since indeed there is an 
analytical expression for Tempty(n21, n22) and for Rempty(n21, n22) but there 
is no analytical expression neither for n21

(
Tempty,Rempty

)
nor for n22

(
Tempty,

Rempty
)

(they are implicit functions). A possible solution is to use the 
inverse function theorem that states that the Jacobian of the inverse 
function is the inverse Jacobian of the function, namely:   

Thus the calculation of the derivatives of the real and imaginary 
parts of the refractive index with respect to transmittance and reflec-
tance is replaced by the calculation of the derivative of the transmittance 
and reflectance with respect to real and imaginary parts of the refractive 
index, proper matrix construction, matrix inversion, and matrix readout, 
taking into account that for example ∂Tempty

∂n22 
and ∂n22

∂Tempty 
are in different 

places of the matrix J and J− 1. 
The results of uncertainty calculations are shown in Fig. 3a and 

Fig. 3b. Concluding Fig. 3a one can see that the absolute value of the 
uncertainty of the real part of the refractive index of the empty cuvette 
rarely exceeds 0.02, except when n21 approaches unity, where depen-
dence of transmittance on n21 disappears. Dependence of uncertainty on 
n21 is nonmonotonic and for every value of n22 there is a clear minimum 
near n21 ≈ 1.5 − 2.0, which is in agreement with previous considerations 
on derivatives. The higher value of n22, the higher uncertainty, which is 
also in agreement with previous considerations. Concluding Fig. 3b the 
uncertainty value of the imaginary part of the refractive index rarely 
exceeds 0.3⋅10− 6. The higher value of n21, the higher uncertainty, and 
the higher value of n22 the higher uncertainty, however, the dependence 
of the uncertainty on n22 is much larger than on n21. 

4.3. Uncertainty analysis – Monte Carlo 

To further validate the uncertainty analysis we also perform Monte 
Carlo simulations. The main reason for making such double-check is that 
approach based on derivatives requires assumptions that derivatives of 
the higher order than the first one can be neglected, which taking into 
account the finite value of u(Tempty) and u(Rempty) can be doubtful, 
especially in the case when the analyzed function is non-monotonic, has 
extrema or saddle points. The exact procedure of Monte Carlo simula-
tion is listed below:  

a. we defined range of variability of n21 and n22 to be 1.0 ≤ n21 ≤ 3.0 
and 0 ≤ n22 ≤ 20⋅10− 6;  

b. for any combination of n21 and n22 we calculated the reference values 
(unaffected by noise) of Rempty and Tempty, this is exactly what is 
presented in Fig. 2a;  

c. for any combination of n21 and n22 we generated ten thousand pairs 
of uncorrelated random numbers that have Gaussian distribution, 
zero mean value, and 0.0025 standard deviation value;  

d. for any combination of n21 and n22 we made a ten thousand numbers 
long set of noisy values of R#

empty and T#
empty by adding random 

numbers (point c) to the reference values (point b);  
e. for any combination of n21 and n22 we calculated a ten thousands 

numbers long set of noisy values of n#
21 and n#

22 using Eq. (11) and 
noisy values of R#

empty and T#
empty (point d) as input; 

f. for any combination of n21 and n22 we calculated a standard devia-

tion of a ten thousand numbers long set of noisy values of n#
21 and n#

22 
(point e); this standard deviation is treated as the uncertainty u(n21)

and u(n22). 

Results obtained using Monte Carlo simulations shown in Fig. 3c and 
Fig. 3d are generally in agreement with the results obtained in an 
approach based on derivatives, taking into account that they can be a 
little bit noisy, which results from the limited set of generated and 
analyzed data set. However, some differences emerge when n21 ap-
proaches unity. 

4.4. Cuvette filled with investigated liquid 

Fig. 4. illustrates the results of calculation of transmittance through 
and reflection from a quartz cuvette (n2 = 1.43 + 10− 7i, geometrical 
details like in Section 3.2) filled with investigated liquid as a function of 
the real and imaginary part of liquid’s refractive index n3. The range of 
variability of n31 is 1.0 ≤ n31 ≤ 1.4 and n32 is 0 ≤ n32 ≤ 50⋅10− 6. The 
maximal value of n31 was set to 1.4 since the real part of the refractive 
index of a cuvette is 1.43 and results of transmittance and reflectance are 
overlapping for values of n31 lower and higher than 1.43 (there are two 
sets of values of n31 and n32 that give the same values of R and T, for 
example {1,0} and {2.05,0}). Moreover, most aqueous solutions have 
n31 ≈ 1.33. What is striking in the results illustrated in Fig. 4, especially 
when compared to the results illustrated in Fig. 2, is the fact that 
transmittance almost does not depend on the real part of the refractive 
index of the liquid and is almost linear on the logarithmic scale with the 
imaginary part of the refractive index of the liquid, which means that T 
exponentially depends on n32. This answers the question of why even 
simple approximations allow for a reasonable estimation of the value of 
the imaginary part of the refractive index. As regards the reflectance 
from the filled cuvette, it is the most sensitive to n31 when n31 ap-
proaches unity, and is the most sensitive to n32 when n32 approaches 
zero. The larger the values of n31 and n32, the lower the sensitivity. It is 
also worth noticing that reflectance from filled cuvette (e.g., with water) 
is lower than from the empty one regardless of the value of n32, and the 
reflection further decreases when the absorption increases. 

J =
∂
(
Tempty,Rempty

)

∂(n21, n22)
=

⎛

⎜
⎜
⎜
⎜
⎝

∂Tempty

∂n21

∂Tempty

∂n22

∂Rempty

∂n21

∂Rempty

∂n22

⎞

⎟
⎟
⎟
⎟
⎠

J− 1 =
∂(n21, n22)

∂
(
Tempty,Rempty

) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂n21

∂Tempty

∂n21

∂Rempty

∂n22

∂Tempty

∂n22

∂Rempty

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (14)   
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Fig. 4. (a) Dependence of the transmittance and reflectance (T,R) on the real and imaginary parts of the refractive index of an investigated liquid (n31, n32) in a case 
when the cuvette is characterized by the refractive index n2 = 1.43 + 1⋅10− 7i. (b) Dependence of the transmittance T or reflectance R on the real part of the 
refractive index of an investigated liquid n31 for selected values of the imaginary part n32. (c) Dependence of the transmittance T or reflectance R on the imaginary 
part of the refractive index of an investigated liquid n32 for selected values of the real part n31. 

Fig. 5. (a,c) Uncertainty of the real part u(n31) of the refractive index of an investigated liquid and (b,d) uncertainty of the imaginary part u(n32) of the refractive 
index of an investigated liquid as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary part of the refractive index 
of an investigated liquid (n31, n32) in a case when the cuvette is characterized by the refractive index n2 = 1.43 + 1⋅10− 7i. The results presented in (a) and (b) are 
obtained using a derivative approach, the results presented in (c) and (d) are obtained using Monte Carlo simulations. In all cases u(T) = u(R) = 0.0025. 
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4.5. Uncertainty analysis – Derivatives 

Uncertainty calculations of extracted values of n31 and n32 are per-
formed in a similar manner that in the case of the empty cuvette, 
however, are a little bit more complicated since first it is required to 
calculate n21 and n22 from Rempty and Tempty and the second time to 
calculate n31 and n32 from Rfilled and Tfilled and using the previously found 
values of n21 and n22. The exact expressions used for uncertainty cal-
culations are as follows:   

Jacobian matrix and inverse Jacobian matrix have the following 
forms: 

J =
∂
(
Tempty,Rempty,Tfilled,Rfilled

)

∂(n21,n22,n31,n32)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Tempty

∂n21

∂Tempty

∂n22

∂Tempty

∂n31

∂Tempty

∂n32

∂Rempty

∂n21

∂Rempty

∂n22

∂Rempty

∂n31

∂Rempty

∂n32

∂Tfilled

∂n21

∂Tfilled

∂n22

∂Tfilled

∂n31

∂Tfilled

∂n32

∂Rfilled

∂n21

∂Rfilled

∂n22

∂Rfilled

∂n31

∂Rfilled

∂n32

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J− 1 =
∂(n21,n22,n31,n32)

∂
(
Tempty,Rempty,Tfilled,Rfilled

)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂n21

∂Tempty

∂n21

∂Rempty

∂n21

∂Tfilled

∂n21

∂Rfilled

∂n22

∂Tempty

∂n22

∂Rempty

∂n22

∂Tfilled

∂n22

∂Rfilled

∂n31

∂Tempty

∂n31

∂Rempty

∂n31

∂Tfilled

∂n31

∂Rfilled

∂n32

∂Tempty

∂n32

∂Rempty

∂n32

∂Tfilled

∂n32

∂Rfilled

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(16) 

The results of uncertainty calculations are shown in Fig. 5a and 
Fig. 5b. Concluding Fig. 5a one can see that the uncertainty of the real 
part of the liquid’s refractive index depends mostly on the value of the 
reflectance, whereas the imaginary part of the liquid’s refractive index 
depends mostly on the transmittance value. It is a qualitatively different 
result than in the case of an empty cuvette. Moreover, the scale of 
changes of absolute values of uncertainties is more than twice as large as 
in the case of the empty cuvette, which however, is quite intuitive. 

4.6. Uncertainty analysis – Monte Carlo 

Similarly like in the case of the empty cuvette, we calculated what 
the uncertainties of the extracted parameters of investigated liquid are 

using Monte Carlo simulations. We note, however, that here we made 
both the transmittance and reflectance from the empty cuvette (R#

empty, 
T#

empty) and from the cuvette filled with liquid (R#
filled, T#

filled) noisy. The 
results are shown in Fig. 5c and Fig. 5d, and are generally in agreement 
with results obtained in the approach based on derivatives, similarly like 
in the case of the empty cuvette, and start to differ when n31 approaches 
1.4, which is close to n21 = 1.43. 

4.7. Cuvette dimensions 

In order to calculate the real and imaginary parts of the refractive 
indices of the quartz cuvette and the investigated liquid one has to 
provide values of the transmittance and reflectance from the empty and 
filled cuvette. However, there are two more values which have to be 
known before performing the final calculations and which are related to 
the geometrical dimensions of the cuvette: the cuvette wall thickness d2 
and the distance between cuvette walls d3. These two geometrical pa-
rameters affect the absorption of the light when passing through media 2 
(quartz) because A2 = e− α2⋅d2 , and media 3 (investigated liquid) because 
A3 = e− α3 ⋅d3 . Thus u(d2) an u(d3) will contribute primarily the un-
certainties of the imaginary parts of the refractive indices: u(n22) and 
u(n32) whereas the uncertainties of the real parts of the refractive indices 
will be affected only slightly. 

Formally, to calculate the uncertainties of the real and imaginary 
parts of the refractive index of the empty cuvette we can use the 
following formulas: 

u(n21) =

⃒
⃒
⃒
⃒
∂n21

∂d2

⃒
⃒
⃒
⃒⋅u(d2) =

⃒
⃒
⃒
⃒

∂n21

∂Tempty

∂Tempty

∂d2
+

∂n21

∂Rempty

∂Rempty

∂d2

⃒
⃒
⃒
⃒⋅u(d2)

u(n22) =

⃒
⃒
⃒
⃒
∂n22

∂d2

⃒
⃒
⃒
⃒⋅u(d2) =

⃒
⃒
⃒
⃒

∂n22

∂Tempty

∂Tempty

∂d2
+

∂n22

∂Rempty

∂Rempty

∂d2

⃒
⃒
⃒
⃒⋅u(d2)

. (17) 

Such indirect calculations are required because there is no analytical 
expression linking n21 and n22 with d2 but there are analytical expres-
sions for ∂Tempty/∂d2 and for ∂Rempty/∂d2 as well as for the remaining 
partial derivatives as was demonstrated in Section 4.2 Eq. (14). We also 
note that in the case of lossless medium 1 (air) there is no influence of 
the u(d3) on u(n21) and u(n22) since α3 = 0 and therefore A3 = e− α3 ⋅d3 = 1 
despite any value of d3. Fig. 6a and b illustrate results of calculations of 
u(n21) and u(n22) for an arbitrary value of u(d2) that equals 0.01 mm. As 
can be seen the contribution from the geometrical dimension uncer-
tainty to the uncertainty of the real part of the refractive index of the 
empty cuvette is completely negligible, but in the case of the imaginary 
part of the refractive index contribution from the geometrical dimension 
uncertainty is significant and approximately equals u(n22) ≈ u(d2)/d2⋅ 
n22 = 0.008⋅n22. 

Calculation of the uncertainties of the real and imaginary parts of the 
refractive index of the investigated liquid can be performed in a similar 
manner than previously taking into account that this time u(n31) and 
u(n32) will depend both on u(d2) an u(d3). Formally:  

u(n31) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n31

∂Tempty

)2

u2( Tempty
)
+

(
∂n31

∂Rempty

)2

u2( Rempty
)
+

(
∂n31

∂Tfilled

)2

u2( Tfilled
)
+

(
∂n31

∂Rfilled

)2

u2( Rfilled
)

√

u(n32) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n32

∂Tempty

)2

u2( Tempty
)
+

(
∂n32

∂Rempty

)2

u2( Rempty
)
+

(
∂n32

∂Tfilled

)2

u2( Tfilled
)
+

(
∂n32

∂Rfilled

)2

u2( Rfilled
)

√ (15)   
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In the case of the cuvette filled with liquid, similarly like in the case 
of empty cuvette, each of the partial derivatives ∂n31/∂d2, ∂n31/∂d3, 
∂n32/∂d2, ∂n32/∂d3 has to be expanded into a sum of four products, 
which part of can be analytically calculated and part has to be calculated 
using inverse Jacobian matrix, as described in Section 4.5 Eq. (16). 
Fig. 6c and d illustrate results of calculations of u(n31) and u(n32) for an 
arbitrary value of u(d2) and u(d3) that equal 0.01 mm. As can be seen the 
contribution from the geometrical dimension uncertainty to the uncer-
tainty of the real part of the refractive index of the investigated liquid is 
completely negligible, but in the case of the imaginary part of the 
refractive index contribution from the geometrical dimension 

uncertainty is significant and approximately equals u(n22) ≈ u(d3)/d3⋅ 
n22 = 0.005⋅n22. 

Results of the Monte Carlo simulations (not shown) are in agreement 
with results obtained in the approach based on derivatives, similarly like 
in the case of the empty and filled cuvette. 

5. Comparison of the rigorous model with popular 
approximations 

Rigorous calculations of optical properties of investigated liquid 
require values of both the transmittance and reflectance. Neglection of 
the reflectance, which is typical for popular approximations, makes the 

Fig. 6. Contribution of the geometrical uncertainty to (a) the uncertainty of the real part u(n21) of the refractive index of a cuvette and (b) the uncertainty of the 
imaginary part u(n22) of the refractive index of a cuvette as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary 
parts of the refractive index of a cuvette (n21, n22) in a case when the cuvette is empty (filled with air). Contribution of the geometrical uncertainty to (c) the un-
certainty of the real part u(n31) of the refractive index of an investigated liquid and (d) the uncertainty of the imaginary part u(n32) of the refractive index of an 
investigated liquid as a function of transmittance and reflectance (T,R) or equivalently as a function of the real and imaginary part of the refractive index of an 
investigated liquid (n31, n32) in a case when the cuvette is characterized by the refractive index n2 = 1.43 + 1⋅10− 7i. In all cases u(d2) = u(d3) = 0.01mm. 

u(n31) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n31

∂d2

)2

u2(d2) +

(
∂n31

∂d3

)2

u2(d3)

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∂n31

∂Tempty

∂Tempty

∂d2
+

∂n31

∂Rempty

∂Rempty

∂d2
+

∂n31

∂Tfilled

∂Tfilled

∂d2
+

√

+
∂n31

∂Rfilled

∂Rfilled

∂d2

)2

u2(d2) +

(
∂n31

∂Tempty

∂Tempty

∂d3
+

∂n31

∂Rempty

∂Rempty

∂d3
+

∂n31

∂Tfilled

∂Tfilled

∂d3
+

∂n31

∂Rfilled

∂Rfilled

∂d3

)2

u2(d3)

u(n32) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂n32

∂d2

)2

u2(d2) +

(
∂n32

∂d3

)2

u2(d3)

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∂n32

∂Tempty

∂Tempty

∂d2
+

∂n32

∂Rempty

∂Rempty

∂d2
+

∂n32

∂Tfilled

∂Tfilled

∂d2
+

√

+
∂n32

∂Rfilled

∂Rfilled

∂d2

)2

u2(d2) +

(
∂n32

∂Tempty

∂Tempty

∂d3
+

∂n32

∂Rempty

∂Rempty

∂d3
+

∂n32

∂Tfilled

∂Tfilled

∂d3
+

∂n32

∂Rfilled

∂Rfilled

∂d3

)2

u2(d3)

. (18)   
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calculation of the real part of the liquid refractive index impossible and 
introduces systematic errors to the calculations of the absorption coef-
ficient. However, having an rigorous optical model we are able to 
calculate these systematic errors exactly and further compare them with 
the uncertainties. Such calculations will answer the question how ac-
curate are the popular approximation and if they are valid. 

5.1. Differences in the measurement procedure 

Most of the commercially available spectrophotometric setups 
measures only the transmittance or relative transmittance. For example, 
in a double-beam spectrophotometers the light beam is divided into two 
same intensity beams. The first of the beams, the reference beam, passes 
undisturbed (there is no sample in the optical path) or through the 
reference sample (empty cuvette, cuvette filled with non-absorbing 
solvent). The second of the beams passes through the investigated 
sample (cuvette filled with the investigated liquid). Thus, the absor-
bance of the investigated solute (let’s assume we want to use the Beer- 
Lambert law) can be easily estimated using the following formulas: 

Asolute = εsolute⋅csolute⋅d = αsolute⋅d

≈

⎧
⎨

⎩

− log10Tfilled(csolute)/T0 approximaton 1
− log10Tfilled(csolute)/Tempty approximaton 2

− log10Tfilled(csolute)/Tfilled(csolute = 0) approximaton 3
, (19)  

where T0 is the transmittance value in a case when there is no sample in 
the optical path of the reference beam, Tempty is the transmittance value 
in a case when there is an empty cuvette in the optical path of the 
reference beam, and Tfilled(csolute = 0) is the transmittance value in a case 
when there is a cuvette filled with non-absorbing solvent in the optical 
path of the reference beam. Other words, these three reference values – 
T0, Tempty and Tfilled(csolute = 0), are used to normalize the transmittance 
through the cuvette filled with investigated liquid Tfilled(c). Such a 
normalization is a big advantage of the modern method for estimating 
the absorbance of the investigated solute since it makes the method 
calibration-free (because the absolute value of the transmittance is not 

required). The main disadvantage is that the modern method tries to 
describe properties of an optical system that is parametrized by four 
independent numbers – n21, n22, n31, and n32, only by two measured 
values, which undoubtedly leads to some undefined systematic errors. 

Presented in this work rigorous model does not introduce mentioned 
above systematic errors, because it describes properties of an optical 
system parametrized by four independent numbers – n21, n22, n31, and 
n32, by four measured values – Tempty, Rempty, Tfilled, and Rfilled. And this is 
an advantage. The main disadvantage of our approach is a more 
advanced measurement procedure, which requires knowledge of the 
absolute values of the reflection from empty Rempty and filled cuvette 
Rfilled, which requires proper calibration (e.g. measurements using a 
material with precisely known parameters). 

5.2. Differences in the definitions of the absorption coefficient 

We also would like to point out that there is some ambiguity in the 
literature concerning the definition of absorbance and absorption coef-
ficient. Formally, the absorbance A and absorption coefficient α are 
often defined using two similar expressions: 

A′

= − log10T = ε′ ⋅c⋅d = α′ ⋅d ⇔ T = 10− A′

= 10− ε′ ⋅c⋅d = 10− α′ ⋅d

A’’ = − lnT = ε’’⋅c⋅d = α’’⋅d ⇔ T = e− A′

= e− ε’’ ⋅c⋅d = e− α’’ ⋅d
, (20)  

where A’’ = A’⋅ln10 and α’’ = α’⋅ln10. This ambiguity is not problematic 
but requires consequence in using chosen definition. Typically in spec-
trophotometry of liquids the decadic absorption coefficient α′ is used, 
whereas in papers more focused on physics or optics the Napierian ab-
sorption coefficient α′ ′ is a more popular choice. In this work we used the 
latter definition since we start our consideration from the definition of 
the electric field intensity of an electromagnetic plane wave that travels 
along x-axis – see Eq. (2). 

5.3. Calculations of the systematic errors 

The exact procedure of calculation of systematical errors introduced 

Fig. 7. Values of the absolute ∊a1,2,3
n32 and relative ηa1,2,3

n32 systematic errors introduced into calculations of n32 by three approximations popular in the literature.  
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into the calculation of attenuation coefficient using three popular ap-
proximations consists of four points:  

a. we defined the range of variability of n31 and n32 to be 1.0 ≤ n31 ≤

1.4 and 0 ≤ n32 ≤ 50⋅10− 6; we assumed that d3 – optical path length 
in liquid equals 2 mm;  

b. for any combination of n31 and n32 we calculated the values of Rfilled 

and Tfilled, assuming n2 = 1.43 + 10− 7i;  
c. for any combination of n31 and n32 we calculated the values of n32 

using three popular approximations:  
• na1

32 = − λ
4πd⋅lnTfilled  

• na2
32 = − λ

4πd⋅lnTfilled/Tempty  

• na3
32 = − λ

4πd⋅lnTfilled/Tfilled,n32=0  

d. for any combination of n31 and n32 we calculated systematic error 
twice, first time as an absolute error ∊a1,2,3

n32 = na1,2,3
32 − n32 and the 

second time as a relative error ηa1,2,3
n32 =

na1,2,3
32 − n32

n32
. 

The results of all calculations are depicted in Fig. 7. As can be seen in 
Fig. 7a the values of the absolute error ∊a1

n32 introduced into the calcu-
lations of n32 by the first approximation, in which no renormalization of 
transmittance is made, is in the 1⋅10− 6–3⋅10− 6 range, and depends 
mostly on the real part of liquid’s refractive index. The values of the 
relative systematic error ηa1

n32 are depicted in Fig. 7d, and as can be seen 
ηa1

n32 exceeds 200% for low values of n32, equal approximately 10%–20% 
for moderate values of n32 understood as included in the 
10⋅10− 6–20⋅10− 6 range, and achieve few percents for the highest values 
of n32. The relative systematic error depends more on n32 than n31. 
Comparing values of the absolute systematic error ∊a1

n32 depicted in 
Fig. 7a with values of uncertainties u(n32) depicted in Fig. 5b, we see 
that the values of ∊a1

n32 are always above values of u(n32), which means 
that the results obtained using the first of the popular approximations 
are significantly affected by the imperfections of this approximation. We 
note that the contribution to this systematic error is not only the neglect 
of the existence of the cuvette but also the neglect of all reflections in the 
considered optical system. In other words, the first model assumes ab-
sorption by a nonreflecting slab of liquid. 

In Fig. 7b one can find results of calculations of the values of the 
absolute error introduced into calculations of n32 using the second 
approximation, in which the transmittance is normalized to the trans-
mittance of the empty cuvette. The values of ∊a2

n32 are in the 
− 1.2⋅10− 6–0⋅10− 6 range, depend mostly on n31, and contrary to the first 
model for which values of n32 are overestimated, here almost all values 
are underestimated. It results from the fact that the reflection from the 
empty cuvette is larger than that from the filled one. The values of the 
module of the relative systematic error ηa2

n32 are depicted in Fig. 7e, and 
as can be seen ηa2

n32 exceed 200% for low values of n32, do not exceed 10% 
for moderate values of n32, and drop below one percent for the highest 
values of n32. The relative systematic error depends both on n31 and n32, 
and for low values of n31 has the lowest value. Comparing the values of 
the absolute systematic error ∊a2

n32 depicted in Fig. 7b with the values of 
uncertainties u(n32) depicted in Fig. 5b, we see that values of ∊a2

n32 are 
above values of u(n32) for higher values of n31, ∊a2

n32 are below values of 
u(n32) for low values of n31 and high values of n32, and ∊a2

n32 are of the 
same order than u(n32) for low values of n31 and low values of n32. This 
means that the results obtained using the second of the popular ap-
proximations can be also significantly affected by the imperfections of 
this approximation, particularly for aqueous solutions (n31 ≈ 1.33) the 
considered approximation is not optimal. 

In Fig. 7c one can find results of the calculations of the values of the 
absolute error introduced into calculations of n32 using the third 
approximation, in which transmittance is normalized to the trans-
mittance of the cuvette filled with a liquid with the same n31 but with no 

absorption. Typically it is a pure (non-absorbing) solvent. The values of 
∊a3

n32 do not exceed 0.08⋅10− 6, and depend both on n31 and n32. The 
values of ηa3

n32 do not exceed 0.008 (0.8%) and also depend both on n31 

and n32. Comparing the values of the absolute systematic error ∊a3
n32 

depicted in Fig. 7c with values of uncertainties u(n32) depicted in Fig. 5b, 
we see that the values of ∊a3

n32 are significantly below the values of u(n32), 
which means that the third approximation can be used for reliable cal-
culations of n32, assuming measurement uncertainty of the trans-
mittance and reflectance to be 0.0025. 

5.4. Aqueous solutions 

At the end it is worth to compare different contribution to the un-
certainty of the imaginary part of the liquids refractive index u(n32) with 
relative systematic errors ηa1,2,3

n32 introduced into calculations of n32 by 
three approximations popular in the literature for quartz cuvette char-
acterized by n2 = 1.43+1⋅10− 7i and in the case of aqueous solutions 
n31 = 1.33. As can be seen in Fig. 8 the relative systematic errors 
introduced by the first and second approximations to n32 value are 
typically one order of magnitude larger than the measurement uncer-
tainty u(n32), except for the largest values of n32, but the relative sys-
tematic errors introduced by the third approximations to n32 value are at 
least one order of magnitude smaller than the measurement uncertainty 
u(n32). 

6. Conclusions 

Development of a rigorous optical model of a cuvette filled with 
liquid allowed us for validation of three popular approximations used in 
the literature for calculation of absorption, or equivalently of n32. We 
demonstrated what the differences in obtained results are when 
employing different approximations, we compared them with estimated 
uncertainties, and we showed that the third approximation yields very 
accurate results, i.e. systematic errors introduced by this method can be 
at least a few times smaller than the measurement uncertainties. We 
point out that the collation of the systematic errors with the un-
certainties is crucial in this conclusion since only this way one is allowed 
to say what a significant difference is and what difference can be 
neglected. We also note that our conclusions are not absolute, i.e. they 
are related to our experimental setup and to measurement uncertainties 
of R and T that equal 0.0025; for other experimental setups character-
ized by different values of reflectance and transmittance uncertainties 

Fig. 8. Comparison of different contribution to the uncertainty of the imagi-
nary part of the liquids refractive index u(n32) with relative systematic errors 
ηa1,2,3

n32 introduced into calculations of n32 by three approximations popular in 
the literature for quartz cuvette and aqueous solutions n31 = 1.33. 
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conclusions can be different, e.g. the difference between our strict model 
and the most precise models from the literature can be significant, thus 
invalidating the closest approximation. 
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